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Models for the NMR parameters in systems of small metal 
particles 

J J van der Mink 
Insfltut de Physique Experimentale, Ecale Polytechruque F 6 d M e  de Lausanne, CH-1015 
Lausanne, Switzerland 

Received 7 November 1994 

Abstract. In the literature on nuclear magnetic resonance in small metal particles. three main 
lines of approach are found which lead lo qualitztvely differenl predictions for the behaviour 
of Knight shift and, where available, for the linewidlh. In [his paper it is shown how these 
differences arise as mnsequences of the different sets of starling hypotheses used in each type 
of approach. Some characteristics of the nuclear spin-lattice relaxation are discussed as well, 
and mention is given lo experimental considerations. 

1. Introduction 

Until fairly recently, most discussions of NMR data for small metallic particles were given 
in the context of Kubo’s theory of the spin susceptibility of free and independent electrons 
in a small system [l], later refined in the influential paper by Denton and coworkers [2 ] .  
The central assumptions are that the particles that make up a sample are completely isolated 
from each other (exchange of electrons between them is excluded) and that their one- 
electron energy level stmctures are all different (even if they contain the same number of 
electrons). It is furthermore supposed that the degeneracy of the one-electron energy levels 
is completely lifted, except Kramers’ (or spin) degeneracy (in Kubo’s Poisson distribution 
[3], however, accidental degeneracies are allowed). It turns out that the kcupancy (single 
or double) of the highest occupied level at zero temperature divldes the thermal behaviour 
into two types: that of ‘odd‘ and that of ‘even’ particles. The particle size distribution in 
the samplemust be taken into account as an additional effect in comparing with the theory: 
its most perturbing effect will be that the sample may contain both even and odd particles. 

Twenty years ago, Yee and Knight [4] studied the NMR of copper particles with mean 
diameters between 2.5 and 45 nm. They found NMR signals that are considerably broadened 
with respect to the bulk, that show asymmetric lineshapes with long tails toward low field, 
and that have absorption maxima that occur to high field (towards lower Knight shift) of the 
bulk resonance. It is customary to ascribe the low-field tail to signals from odd particles, 
and to consider the absorption maximum as the maximum of a symmetric resonance line due 
to even particles. The maximum of a symmetric NMR line coincides with its first moment; 
the shift of the first moment (with respect to the resonance frequency of a ‘bare’ nucleus) 
is linearly related to the electron spin susceptibility. In this interpretation, the shift of the 
absorption maximum is given by the even-particle susceptibil3y of Kubo theory. If however 
one ignores the odd/even distinction when looking at their NMR lines, there is little evidence 
that the first moment does not coincide with the bulk resonance position: in that case the 
observation that remains to be explained is the asymmetric lineshape and the temperature 
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dependent broadening. These three features are contained in recent theoretical work by 
Beenakker [SI and by Efetov and Prigodin [6]. 

For the susceptibility, the latter authors find a temperatureindependent, Pauli-like 
behaviour, and ascribe this to their using the grand canonical ensemble. It is known however 
[2,7] that, when the restriction of electron conservation is lifted in the reasoning of Denton 
et nl [ Z ] ,  the behaviour of the susceptibility remains qualitatively similar (odd/even effects, 
temperature dependence) to that found in the canonical ensemble. In fact, this result of 
Efetov and Prigodin (and a similar conclusion by Beenakker) is due to a fundamental 
difference between the descriptions of the experimental systems in their work and in 
Kubo type theories. Since this point has remained somewhat obscure, this paper will 
start by describing a similar model (the ‘tunnelling/localization’ model) in some detail, and 
establish, without referring to random matrix theory (MT), rather general equations for the 
susceptibility x, the Knight shift K ,  the second moment of the NMR line A K 2  and the 
nuclear spin-lattice relaxation T;’. Then we make the identifications between variables 
occming in our formulation and in RMT, especially to find a connection with Beenakker’s 
results [5] for x. K and A K 2 ,  and go on to-discuss spin-lattice relaxation. Finally, we 
make a brief comparison with the ‘exponential healing’ types of parametrization [S, 91 that 
have been used to describe experimental NMR spectra of small platinum particles. The 
original ‘isolated particle’ model has been repeatedly reviewed [lo-121, and here we will 
only mention its conclusions, concerning x and K (no results are known for the second 
moment). 

3 J van der Klink 

- 

- ~~ 

2. The humellingAocalization model 

The experimental sample is considered to consist of N randomly packed metallic particles, 
separated from each other by tunnel baniers. The packing of the particles is supposed to 
lack perfect translation symmetry, so that they all have slightly different electronic properties 
except that each particle has volume U, and contains on average M electrons. At the outset 
therefore, one considers an ( N  x M)-electron system, representing a macroscopic piece of 
material. This is very different from the strictly non-interacting small particle, containing 
a limited number of electrons, that is the basic object in Kubo type theories. The energy 
level distribution of the total ( N  x M)-electron system is (quasi-) continuous, but each 
of the corresponding eigenfunctions is supposed to be well localized in only one of the 
N particles. We number the particles with an index U, and the energy levels that have their 
associated eigenfunctions localized within or with an index k (k = 0 is the lowest-energy 
level localized in or). Due to the tunnelling within the ( N  x M)-electron system, an electron 
can jump out of level (a, k) and another into it without strict local conservation of energy. 
We assume that the probability distribution of the energy of the electron in level (or, k)  is 
given by a normalized Lorentzian L ( E  - E;);  for simplicity its width y / 2  is supposed to 
be independent of (or. k): 

The charge density distribution of level (or, k), el@t(r)l2.  is taken as independent of its 
energy distribution and therefore as completely specified by the indices or and k. It is 
normalized within the volume U of particle or, but not necessarily uniform within that 
volume: 

U E )  = (l/a)(v/2)/[E2+ (U/2)*1. (1) 

I*t(T)I2 = U-’ - &(r) (2a) 

&(r) d r  = 0. 
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The functions @(T)  describe the effects of spatial boundary conditions (the spatial 
dishibution of the tunnelling barriers): we neglect the atomic strncture and make a jellinm 
type of approximation to describe the electrons within the volume U. An important timescale 
in NMR of metals is the correlation time for the fluctuations in the contact hyperline 
interaction, roughly given by the time  it^ takes for an electron to fly through an atom 
[13]. If the volume U is sufficiently larger than an atomic volume the average lifetime of 
the electron in a particle will be much longer than the correlation time, and on the NMR 
timescale we have a well defined local density of states at energy E at point T of particle 

(3) 

To calculate thermodynamic properties of the macroscopic sample described above, 
one proceeds in two steps, as in Kubo theory. In the first step we calculate thermodynamic 
averages over an ensemble of particles each completely identical to particle o( in the~sample. 
These averages are calculated using the Fermi-Dirac dishibution function f ( E ) .  The total 
number ( N  x M) of electrons in the sample is supposed to be so large, and the temperature 
so~low, that the chemical potential p ( N  x M, T )  of the ( N  x M)-electron system can be 
taken as temperature independent: we will call it, as usual, the Fermi energy EF. Due to the 
tunnelling contact between the particles, this will also be the chemical potential appearing 
in the function f ( E ) ,  independent of the particle index a. In the second average, the 
differences in level structure E; for different CY are taken into account. In our application, 
this will be done by specifying the correlation functions R I ( E I )  and Rz(E1, Ez), defined 
as follows: R1(EI)dEl gives that fraction of the N particles that has an energy level 
in the interval between El and El + dEl (irrespective of the index k of that level), and 
&(El,  Ez)  dE1 dEz gives the fraction that has one level between E1 and E1 fdE1, and a 
second, distinct, level between E2 and EZ + dEz. 

According to this rule, to obtain the electron spin susceptibility X of the sample, we 
calculate first a thermodynamic average for the susceptibility xu: 

f f :  

P ( E ,  T )  = c L ( E , U  - E)l@t(r)lz. 
k 

x a  = - - O P O P ~ / U ) C / L ( E , U  - E)(af/aE)dE (4) 
k 

and next an average over particles 01 

(5 )  
- x = N-’ Exa = - ( ~ ~ o P ; / u )  // RI(EI)L(EI - E)(af/aE)dEdEi. 

a 

To test whether or not all particles in the sample have the same x ,  we consider 

x L(EI  - E)L(Ez  - E’)(af/aE)(af/aE’)dEdE’dEi dEz. (6b) 

Similar averages for the Knight shift K are calculated starting from the expression for K 
at site T in particle a: 
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The average over all sites in the volume U of particle or: 

J J van der Klink 

K' = U-' J K(a, r )  du 

(8) - 2  U - 3 x  

and the average over all particles or - 
K = ix. (9) 

Experimentally, this average Knight shift is given by the position of the first moment 
(centre of gravity) of the NMR line, not by the position of the maximum amplitude. The 
second moment of the NMR line is given by 

AK* = ( N u ) - ' C / ( K ( a , r )  -F)'du 
- 

m 

with 

AFl = U 1 +$(~)rpl"W du. 

Now it is assumed that the @(T) are such that 

AZi = (1lb) 
and furthermore that the average, expressed by the sums over CI and k in (lo), can be taken 
separately over the A& and the E:: 
- 
A K 2  = ($)'g+ (4&&/3)2A[R(E~)[ 1 L(E1 - E)(af/aE)dE dE1. r (12) 

The nuclear spin-lattice relaxation rate T;' of a nucleus situated at position T in particle 
01 is given by the Korringa type expression 

s(F(O1, T)T)- '  = - ( ~ W O & / ~ ) ~ Z  l@(T)121#.p(T)12 
kI 

x //L(E; -E)L(E;  -E ' ) (a f /aE ' ) s (E-E ' -Aw)dEdE ' .  (13) 

Here S is the Korringa constant, T the temperature and o / k  the difference between 
L m o r  frequencies of the electron and of the nucleus, and we have used the fact that f ( E )  
varies slowly over an interval Am. Experimental determinations of spin-lattice relaxation 
are often performed at a given position in the NMR line, at fixed K .  At low temperatures 
af/aE' = -S (E' -  EF). If furtbermore it is found experimentally that at fixed K the value 
of q is independent of the field, then one has 

(14) 
The right-hand side may be temperature dependent, but this equation says that all nuclei 
that resonate at a given K have the same relaxation time, and therefore the relaxation curves 
must be exponential, if the conditions of low temperatures and of field independence are 
fulfilled. It is unlikely that (14) gives a numerically correct value for the relation between 
TI and K ,  because of susceptibility enhancement effects [14]. 

S( f i  (or, r)T)-' = K2(or. r) .  
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3. Results from random matrix theory 

In the bulk, the Pauli susceptibility and the Knight shift are independent of the applied 
field, and they are therefore zero-field properties that can be calculated by perturbation 
field theory. In the first step of Kubo type theories, exactly such a perturbation theory is 
applied to a (canonical) ensemble of particles that all have the same one-electron energy 
level structure; in the second step, one averages over the energy level structures. For 
consistency, the second step must (like the first one) consider energy level structures in zero 
applied field. If random matrix theory [15,16] is used for the second step, the appropriate 
ensemble is either the orthogonal or the symplectic one: as already remarked by Denton 
et a1 [2] the unitary ensemble is not suitable to calculate the susceptibility. This can also 
be seen as follows: consider a neighbouring pair of twofold degenerate levels in a particle 
belonging to the symplectic ensemble. Switch on a small electric field each level shows 
a magnetic splitting, supposed to he small compared to the zero-field splitting between 
the pair. Increasing the field makes the ‘up’ level of one member of the pair approach the 
‘down’ level of the other. In the unitary ensemble, crossing of these levels is forbidden, and 
therefore the incremental susceptibility a M / B H  goes to zero. (However, in Beenakker’s 
calculation [5], the susceptibility is independent of the ensemble used; Efetov and Prigodin 
[6], who use only the unitary ensemble, find a susceptibility equal to the bulk Pauli value.) 

To proceed further with (6) and (E), explicit forms for the correlation functions RI and 
Rz are needed. It is usual 1151 to take 

with the level spacing A independent of Et for positive energies. The average number of 
electrons in a particle is then given by 

Furthermore, it is supposed that R2(E2, El) depends on the dimensionless variable q = 
[El - E 2 [ / A  through the twdevel cluster function Yz(q): 

Rz(Ez.Ei) = (1 - Yz(q))Ri(Ei)Ri(Ez).. (17) 

In random matrix theory, the expression for Yz(q)  is known [U. 161 for the different 
ensembles. For the Poisson distribution [3], the energy levels are completely uncorrelated, 
and therefore Yz(q) = 0. It is convenient to introduce the function 

and to approximate it as the convolution of two Lorentzians: 

LT(E1) 25 (l/n)[(y/2) f (4kT/n)l/[(El - + [ ( y / 2 )  + (4kT/n)l21. (19) 

As long as ( y / 2 ) + ( 4 k T / r )  is small compared to Ep, integrals over El that involve L T ( E I )  
and that, according to (15). should be taken over positive values of E I  only can be extended 
from -a to +a, and 

(20) 
+m 

L T ( E ~ )  dEl = 1. 
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With equations (3, (9), (18) and (20): 

x = popiEF/vo 
- 
- 
K = $. 

Here vo = v/M is the particle volume per electron, and Ep is the Fermi energy of 
the system under consideration (metal particles separated by barriers), not necessarily 
independent of particle size (although later on we will consider this to be the case). Using 
the approximation (19), and furthermore introducing 

a = ( y  + 8kT/z)/A (22) 

(6) can be written as 
- 
Ax2 = (zff)-'g(ff)m2. (23) 

The function g(a) is shown for the different ensembles in figure 1, and explicit forms are 
given in the appendix. The parameter a describes both size and temperature effects. One 
may identify the parameter y with lifetime broadening: y-' o( t. The lifetime t before 
an electron tunnels out of a particle is supposed to increase with a linear dimension of the 
particle. The parameter A is given by E p / M ;  when EF does not vary with particle size, 
y / A  goes as M / t ,  which varies as the surface of the particle. The other contribution to 
a ,  8kT/nA, varies at fixed temperature with the volume of the particle. With the cluster 
functions of random matrix theory, AxZ goes to zero for very large a; while for very small 
values A x z / W 2  increases as a-'. For the Poisson dishibution, g(a) = 1 for all values of 

- 
- 

a. 

0.05 . 

0.2 0.5 1 ,  2 5 10. 
a 

Figure 1. The function g(u) as it appears in (23) and (24) for thc symplectic. unitay and 
orthogonal ensembles (curves labelled s, U, and 0 )  and in (31) for the exponential healing model 
(curve labelled e). Far the Poisson distribution, g(a) = 1. 
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- 
(24) 

-2 
= ($)'Ax2 + ($)*(na)-'m2A = K (za)-'(g(a) + A )  

where the constant A ,  the particle average of A;k appearing in ( l l b ) ,  has. according to 
Beenakker [5 ] ,  the value of two in the orthogonal ensemble, and one-half in the symplectic 
ensemble. It is unclear what the value of A should be for the Poisson distribution. 

The first term in the right-hand side of (24) describes the effect on the NMR frequency 
of the variation in susceptibility between particles: the stronger the level repulsion, the less 
variation in x .  The second term describes the site to site variation of the wavefunction 
within a particle. With the above estimates for A ,  the wavefunction aspect dominates  at^ 
high temperature, whereas both effects contribute about equally at low temperature. 

The spin-lattice relaxation averaged over all nuclei in the sample is probably not a 
quantity that is easy to evaluate experimentally, and, as already indicated, the results of free 
electrontheory show only poor agreement with experiments even in the bulk. If nevertheless 
we calculate the average of (13), 

" I  (25) S m  = x2 [ 1 + y L ( h o / 2 ) ( 1  + A )  + y Y*(q)L((qA + hw)/2)dq 
A 

we find that the right-hand side is temperature independent, so this 'average' relaxation rate 
should follow the Korringa law F T  = constant. 

4. The exponential healing description 

The exponential healing description does not consider finite-size effects, and focuses on 
surface effects instead. The model system is an infinite slab of thickness 2d. Even for 
a monolayer, the number of electrons is very large (infinite) and the density of states is 
continuous. It is supposed that the local density of states at the Fermi level (and therefore 
the Knight shift) varies with distance x from the centre of the film such that 

K ( x ) / L  = 1 - B exp((lxl- d)/xd (26) 

where the constants B (the fractional reduction of the local density of states in x = fd), 
xo (the healing length) and K ,  (the bulk shift) are supposed to be independent of the slab 
thickness 2d.  The normalized NMR spectrum is given by 

( 2 7 4  I ( K )  = (xo/d)(l - KIKm1-l for KO < K < Kd 
I o  otherwise 

with 

K o / K ,  = 1 - B (27b) 

and 

K d / K ,  = 1 - Bexp(-djxo). (27~) 
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KO is the Knight shift at the surface, and Kd that at the centre of the slab. The first 
moment of the NMR line (and therefore also the susceptibility) of the sample depends on 
the thickness: 

J J van der Klink 

The second moment is given by 

- -  = = (Km - K ) ( K  - ;(Kd + KO)). 

In the right-hand side of this equation, the first factor goes to zero for a thick slab, whereas 
the second factor goes to zero for a thin film. For the spin-lattice relaxation rate, the usual 
Korringa relation, similar to (14), holds for every position in the NMR line, and the relaxation 
curves are exponentials. To allow some comparison with the tunneUing/localization model, 
(X) ,  consider the low-temperature limit of the latter. In this case, LY increases as the square 
of a linear dimension; in the exponential healing description LY is replaced by 

IY = (dfxo)' 

and (29) becomes 
- 
A K Z  = (ra)-'g(a)(BK,)' 

The function g(0r) appearing in this equation is also plotted in figure 1. 
The simplicity of the exponential healing approach sketched here (as compared to other 

treatments [17]) is due to the adoption of the slab geometry, and of course to the lack 
of sophistication of the approach itself. The calculated variations of the Knight shift 
in a five-layer (three-site) slab of platinum [IS] give some justification for this type of 
parametrization, but on the other hand, in a free-electron system one expects oscillating, 
rather than exponential variations in the Fermi level local density of states when going away 
from the surface 1191. 

5. Discussion 

In recent work on NMR of small copper particles 1121 it has been found that the linewidths 
are not simply proportional to the magnetic field: this indicates that the widths are partially 
determined by quadrupole interactions, making quantitative comparisons with linewidth 
theories [5,6] impossible. On the other hand, the identification of the absorption maximum 
of these asymmetric NMR lines with the first moment of an even-particle signal [4, 121 rests 
on the hypothesis that the latter is symmetric. 

In platinum catalysts, which consist typically of metal particles with mean diameters 
between 1.5 and 5 nm, supported on mineral oxides, and separated from each other by 
distances a few times their diameter, the experimental NMR data from several laboratories 
[8,9], typically obtained between 20 K and 200 K can be well described with the exponential 
healing method specifically the spectra are temperature independent, and the spin-lattice 
relaxation time at fixed position in the spectrum obeys TIT = constant. It is not really 
understood why platinum particles of this size behave more like macroscopic samples with 
a large surfaceholume ratio than as isolated particle systems; on the other hand, Yee and 
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Knight have already pointed out [4] that little is known about the validity of the constant- 
electron-number hypothesis for real samples of metal particles interacting, even weakly, 
with an embedding matrix. 

Some recent work in platinum cluster compounds indicates that towards lower 
temperatures the relaxation time in this material no longer follows the relation TIT = 
constant [ZO], which has been considered as the hallmark of macroscopic behaviour. The 
molecules of such compounds consist of a transition metal fragment (up to several hundred 
atoms) surrounded by a large number of ligands. The samples consist of packed powders 
containing only these molecules. Since the ligand shells are not very thick compared to the 
dimension of the metal fragment, such samples behave as semiconductors under an electric 
field [21], and could be expected to be realizations of the tunnellingflocalization model, 
but, so far, the strong variation of lineshape with temperature expected in the mesoscopic 
regime [S, 61 has not been observed. 

Comparing the predictions from the ‘isolated particle’, the ‘tunnellingflocalization’ and 
the ‘exponential healing’ models for NMR of systems containing small metallic particles, one 
sees how they are r e l a g  to the hypotheses underlying the models. The ‘isolated particle’ 
model leads to oddeven behaviour for kT smaller than the average level spacing. This 
occurs even in the grand canonical ensemble, where it is related to temperature variations 
of the chemical potential, needed to keep the average number of electrons constant when 
a small, but non-zero, number of energy levels can be attained through thermal excitation. 
The NMR parameter that has been mainly discussed in this model is F. It has been remarked 
that the discreteness of the energy levels should result in extremely long values for the spin- 
lattice relaxation time [22]. The two other models do not show oddeven behaviour because 
they start by considering a large system with spatially non-uniform NMR behaviour. 

The exponential healing description considers boundary effects in a semi-infinite system. 
Two parameters are introduced in a rather ad hoc fashion: the local Susceptibility at the 
surface (taken as independent of sample thickness) and a characteristic distance over which 
the susceptibility ‘heals back‘ to its bulk value. Since both parameters are supposed to 
be independent of temperature, and since the densities of state are continuous and without 
structure, this parametrization does not ‘predict’ temperature dependent effects. In the 
tunnelling/localization model, one finds features of each of the two preceding ones. The 
densities of state are continuous, and therefore the spin-lattice relaxation curves should be 
exponential, and the average spin-lattice relaxation time obeys 71 T = constant. Since 
the average density of states at the Fermi level is governed by bulklike behaviour, the 
average x and X are also, independent of temperature. However, there can be considerable 
structure in the density of states, and this structure may be different from particle to particle. 
Therefore, the variation in susceptibility when going from particle to particle, expressed by 
~G, is non-zero at IOW temperature. The second moment of the NMR line, 5, has a 
contribution due to Ax2, and another due to non-uniformity of the wavefunctions within the 
particle. The RMT result for the latter contribution [5 ]  is size independent, in sharp contrast 
to the broadening given in (29), due to a similar phenomenon in the exponential healing 
description. 

The most marked feature that the tunnelling/localization model shares with the isolated 
particle model is the prediction of temperature dependent effects when kT << E F / M  (M is 
the average number of electrons per particle). Here however, it is AK2 that should vary 
with temperature, while ?? remains constant. Since all K > 0, this means that the NMR 
absorption line is asymmetrical and that its maximum’will shift  with increasing temperature 
towards the value of the bulk K .  Experimentally, this may be difficult to distinguish from 
a similar shift of 

- 

- 

predicted in the isolated particle model (for ‘even’ particles), unless , 



2192 

the signal to noise ratio is sufficient to allow a clear differentiation between the temperature 
variations of 

J J van der Klink 

and of the maximum of the line. 
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Appendix. Forms of g(a) 

Starting from (6b), (15), (17) and (22). and introducing the auxiliary function 

L ( C )  = (l/n)(cZ+ I)-' (AI) 

we find for g(a) appearing in (23) 

J -m 

For calculations it is easier to work with the two-level form factor b(k) = b(-k): 

+CO 

b(k) = [, Y&) exp(2rrikr) dr (A3) 

and to set a = 2 m .  Explicitly forms for the b(k) of the unitary, orthogonal and symplectic 
ensembles are known. (A2) becomes 

1 - g(a/2z) = a b(k) exp(-ak) dk. dm 
A.1. Unitary ensemble 

{ i - k  f o r 0 6 k G l  
b(k) = 

fork > 1 

g(a/2n) = (1 - exp(-a))/a. (A61 

As explained in the text, the unitary results are not relevant to Knight shift measurements; 
(A6) is given for completeness' sake. 

A.2. Orthogoml ensemble 

1 - 2k + k ln(2k + 1) for 0 < k < 1 
for k z 1 I -1 + k In(2k + 1) - kIn(2k - 1) 

b(k) = 

g(u/27r) = (1 - exp(-a))/a + [-cosh(a/2) + 2sinh(a/2)/a]Ei(-n/2). 
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A.3. Symplectic ensemble 

1 -k /2+ (k/4)In[l - kl for 0 < k < 2 
fork 2 

b(k) = 

g(a/2?r) = (1 - exp(-2a))/(4a) + (a + 1)exp(-a)Shi(a)/(Za). (A101 

The symbol Ei(x) stands for the exponential integral 

Ei(x) = - l, exp(-t) dt 

where the principal value of the integral is taken, and 

Shi(x) = (Ei(x) - Ei(-x))/Z. 
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